

48 VDC Shunt PCB Replacement

Reason:

Some Vesta Power Modules may have been shipped with the incorrect shunt PCB (i.e., 12-24 volt PCB instead of a 48 volt PCB). This can easily be corrected by following the instructions below.

- Disconnect the inverter from all sources of AC power (utility/generator).
- Ensure all power is removed from the shunt by disconnecting the positive wire from the battery.
- Locate the shunt in the Vesta Power Module. The PCB is attached to the shunt.
- Remove the NEGATIVE battery and inverter wire from the shunt (if necessary) to gain access to the shunt PCB.

- Note the PCB's orientation on the shunt.
- Disconnect the in-line fuse and wire from the *shunt* PCB. Save the fuse for later replacement. It is not necessary to remove the wire connected to the Vesta unit as the existing wire and 1/2 of the fuse holder can be reused.
- Remove the two screws and hardware securing the PCB to the shunt.
- Position the 48 volt shunt in the same orientation as the previously removed PCB and reinstall the hardware exactly as shown below.
- Tighten the two screws until secure.
- Insert the in-line fuse (just removed) and reconnect the wire to the existing in-line fuse holder.

12 Volt Shunt

24 Volt Shunt

1-24 Volt Shunt PCB

24 Volt Shunt PCB

- Reconnect the battery and inverter wires to the shunt terminals (if removed) and tighten the connections.
- Recheck all wiring.
- Check the operation of the VO-DPM. If it is not operating properly, recheck the wiring again.